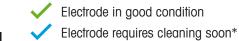


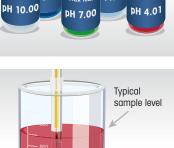
pH Electrode Maintenance Guide

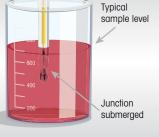
Electrode Preparation


Electrode Calibration

- 1. Take a minimum of two pH buffers bracketing the sample pH.
- 2. Use a fresh amount of aliquot of non-expired pH buffer for every calibration point.
- 3. Pour enough to submerge the sensor junction.

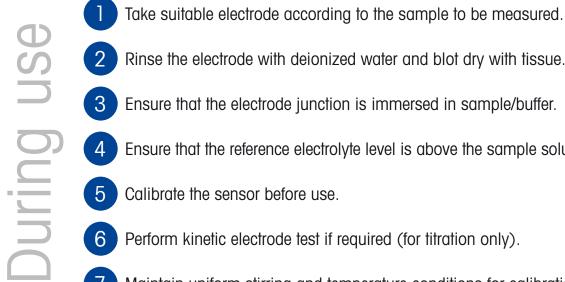
- 4. Stir the buffers (if required).
- 5. Start the calibration and take the temperature of buffers into account.
- 6. Rinse electrode thoroughly with deionized water and blot dry with tissue.
- 7. Repeat steps 2-6 for next buffer.
- 8. Evaluate as shown in table below.


Slope/Offset	±0-20 mV	± 20–35 mV	> 35 mV
95-105%	 Image: A set of the set of the	 Image: A set of the set of the	 Image: A second s
90-95%	 Image: A start of the start of	 Image: A start of the start of	
85-90%	 	 	
<85% or >105%	×	×	×



Cleaning and regeneration required* X Electrode worn out and needs replacement

www.mt.com/phlab-electrodecalibration



* Refer to the Electrode Troubleshooting section below

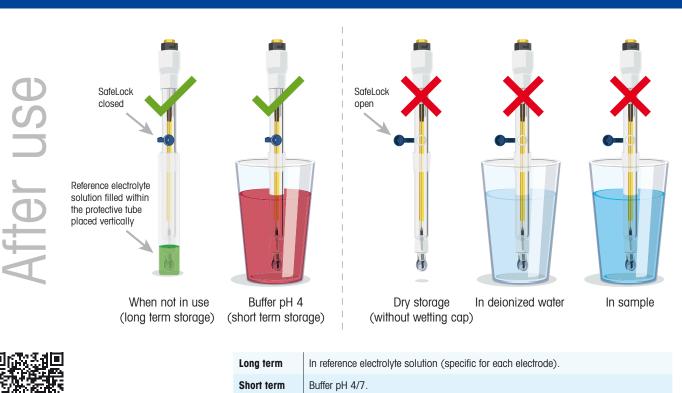
Good Measuring Practices (pH/Titration)

- 2 Rinse the electrode with deionized water and blot dry with tissue.
 - Ensure that the electrode junction is immersed in sample/buffer.
- 4 Ensure that the reference electrolyte level is above the sample solution level.
- 5 Calibrate the sensor before use.
- Perform kinetic electrode test if required (for titration only). 6

Possible

Probable

Maintain uniform stirring and temperature conditions for calibration and sample measurement (pH/Titration).



8 Rinse the electrode thoroughly between consecutive measurements.

www.mt.com/phlab-electrodemeasurement

www.mt.com/phlab-electrodepreparation

3

Never store the electrode dry or in distilled water as this will affect the pH-sensitive

glass membrane and thus shorten the lifetime of the electrode

www.mt.com/phlab-electrodestorage

Never

Electrode Troubleshooting

1. Symptoms, causes and regeneration procedure for pH sensitive glass membrane

(i) Highly probable * Immerse the electrode glass membrane in regeneration solution for not more than 2 minutes

* Artificially colored green for illustration purpose

		-	_	_	-				
Inspection	Cause Symptom	Ageing of glass	Scratches on membrane	Broken membrane or shaft	Gel layer destroyed or dehydrated	Dry storage of electrode	Calcium on glass membrane (whitish film)	Oil, fat or tar residues (visible?)	Deposits of unknown substances (visible?)
	Reduced slope (80–90%)	0	۲	—	—	—	١	۲	۲
Environment	Very small slope (<80%)	۲	—		۲		—	—	—
Is instrument ok?Cross-check with another	Slow response	۲	۲	_	۲	۲	۲	۲	۲
instrument	Fluctuating reading	۲	۲	۲	۲		۲	۱	
Is electrode cable ok?	Zero point shift	۲	۲	—	۲	۲	۲	۲	۲
 Cross-check with another cable 	Reason	High temperature, age of electrode	Abrasion, solid particles, incorrect cleaning	Mechanical or temperature shock	lon deficient media, non-aqueous applications	Wrong storage	Measurement media	Measurement media	Measurement media, no cleaning
Electrode	Restoration procedures	Regeneration*	Replace electrode	Replace electrode	Rehydration with electrolyte	Rehydration with electrolyte	Dip the glass in acetic acid / dilute hydrochloric acid until deposits are dissolved. Follow up with	Clean with degreasing agent, then with deionized water. Condition the	Clean with degreasing agent, then with deionize water. Condition the
Presence of an air bubble?							regeneration	electrode in pH buffer 4	electrode in pH buffer 4

Electrode Storage

• Refer image 2 in electrode preparation

Reference electrolyte level?

• Refer image 5 in electrode preparation

Glass membrane activation?

• Refer table 1 in this section

Clogged junction?

• Refer table 2 in this section

Incidence

2. Clogged junction: Causes and cleaning procedures

	Type of contamination		Cleaning agent	Reaction time	Remarks	
	Silver sulfide		Thiourea	5–60 minutes	Leave until coloration disappears	
	All possible types of contamination	First recommendation for removing unknown substances	HCI 0.1 M	Approximately 12 hours	Can also be used for internal cleaning	
		Second recommendation for removing unknown substances	Chromic-sulfuric acid mixture	Approximately 30 minutes	Also cleans deposits very well. Electrode must be regenerated after this	
	Lipophilic substances Calcium, scale		Pepsin/HCI cleaning solution	>1 hour	Can also be used for internal cleaning	
			NaOH 2%	Approximately 20 minutes	Rinse the electrode with deionized water followed by conditioning in pH buffer 4	
			Ethanol, acetone	Approximately 30 minutes	Highly suitable for edible oils. Always recondition the pH electrode in buffer pH 4 or 0.1M HCl	
			Acetic acid	Approximately 30 minutes	Electrode must be regenerated after this procedure	
			Hot water (80 °C)	Approximately 12 hours	Thorough washing with deionized water followed by conditioning in pH buffer 4	

www.mt.com/phlab-electrodetroubleshooting

www.mt.com/pH

